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Abstract
We analyse the existence of almost exponentially decaying states associated
with quasi-stationary states of the Hamiltonian Hω = − d2

dx2 + ωδa defined on
L2(R+), where δa is the repulsive delta potential. We use Krein’s formula
to study the time evolution of the system defined by Hω. In this paper we
find that the quasi-stationary states in the infinite limit ω → ∞, decay almost
exponentially; this fact can be explained physically due to the existence of
resonances.

PACS numbers: 03.65.−w, 03.65.Db
Mathematics Subject Classification: 47D08, 47B34, 81P99, 81Q05

1. Introduction

The concepts of resonance and quasi-stationary states play a fundamental role in quantum
mechanics. They allow us to understand decaying processes and the associated concept of
mean lifetime (see [2, 13, 16]) which we want to address in this paper by means of a one-
dimensional (1D) system. We should remark that the existence of quasi-stationary states with
almost exponential decay in quantum-mechanical systems has been illustrated in the literature
[8, 17]; however, to our knowledge, a rigorous mathematical proof of the existence of such
solutions was still missing. The scope of this paper is to study the almost exponential decay
of the unitary group associated with a self-adjoint operator with a delta perturbation. To this
end, we consider the self-adjoint realization of the operator,

Hω = − d2

dx2
+ ωδa, (1.1)
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on the Hilbert space L2[0,∞), with Dirichlet boundary conditions at x = 0, i.e., ψ(0) = 0;
this ensures that the particle does not pass to the region x < 0. Hamiltonian (1.1) enjoys two
important properties, on one side it has an analytic expression for the resolvent, (z − Hω)−1,
which is given by Krein’s formula (see section 2). On the other side, it allows an intuitive
physical picture for the quasi-stationary states, the resonances and exponential decay, without
the cumbersome analysis of more realistic experimental processes, like the positive muon
decay µ+ described in [14], and the so-called beta decay of unstable nuclei such as uranium-
238 and the decay of doubly ionized uranium, among many others (see, e.g., [1], and the
references therein). Furthermore, the operator (1.1) represents a physical system consisting of
a quantum-mechanical particle moving on the positive half-line under the action of a repulsive
point interaction at x = a of strength ω. The interaction ωδa acts as a thin barrier which cannot
trap the particle in the interval [0, a], but which for large values of ω leads to a resonance
which appears as a trapped state ψ ∈ L2(0,∞) with a large lifetime. We shall prove the
existence of states which decay with an approximately exponential rate and which are initially
localized on the fixed interval [0, a]. We also provide explicit estimates of this decay rate.

From a semiclassical point of view we can introduce the concepts of mean lifetime τ and
quasi-stationary states. We want to use a semiclassical analysis to estimate the mean lifetime
associated with a quasi-stationary state represented by a particle with energy En = h̄2kn/2m,
moving in the region 0 � x � a. Such a state becomes a stationary state in the zero
penetrability limit ω → ∞. Its mean lifetime can be obtained as follows. First we compute
the transmission coefficient Tn at x = a. A straightforward canonical computation leads to:

Tn =
(

1 +

(
1

knaε

)2
)−1

≈ (knaε)2

for 0 < ε � 1. Now we recall the probabilistic interpretation of quantum mechanics and
imagine instead of one quasi-trapped particle in [0, a], there are N such particles which do
not interact with each other. As a consequence of the particles hitting the delta barrier from
the left and the fact that the transmission coefficient is different from zero; some of them
will leave the well by tunnelling. In order to define the decay probability we also need to
estimate the frequency of such hits at x = a. This can be obtained by the semi-classical
relation νn/2a, where νn = h̄kn/m is the particle velocity and 2a is the distance between two
such consecutive hits. Then we can use the relation for the decay probability [8], that is, decay
probability per second equals frequency of hits times penetrability. Now, if we denote by dN

the infinitesimal variation of the number N of quasi-trapped particles, then the decay law is
given by dN = −N times decay probability per second times dt = −N/τn, where the mean
lifetime τn becomes

τn = 2a

νn

T −1 ≈ 2
m3aω2

h̄5k3
n

.

The semiclassical estimation of τn relies on the classical expression for νn, the frequency
of collisions. Nevertheless, in order to compute νn one should construct wave packets which
are localized in space within a region much smaller than the scale a, and thus one would
require that the wave packets spread significantly over the lifetime. This of course cannot be
fulfilled, in particular, for small values of n (see [13], and the references therein), leading to
an overestimation of the mean lifetime, when compared to the more accurate results obtained
in theorem 5.8.

There are results on approximately exponential decay behaviour for other models. For
instance we recall that in [10–12] it is shown that exponential behaviour exists for the class
of states obtained by truncating a resonant solution in a region containing the support of the
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potential. This problem has also been studied by [9] and [15]. On the other hand, the usual
analytic dilation methods, employed for example by [7], also give rates of exponential time
decay. However, in the context of this paper, as well as in some of the previous works on the
subject, analyticity does not hold (see, e.g., [9, 11, 12]).

We also remark that the question about the self-adjointness of Hamiltonians involving
the delta distribution has already been studied by several authors; for example, in [3] it has
been shown that the perturbation ωδa belongs to the Kato class K1 (see also [4]). Even so, for
the sake of completeness in the preliminaries below we give a rigorous definition of the
operator Hω.

Our approach consists in studying the corresponding stationary problem, which is
determined by the behaviour of the Hamiltonians resolvent near the real axis. Then in
section 2 we use the Krein formula to study this problem, in section 3 we show some
applications to the one-point perturbations, and in section 4 we state our main results; the
proofs of the theorems of section 4 are given in the appendix.

2. Preliminaries

Let C1
c (R+) be the space of the once differentiable functions with compact support contained

in R+ =: [0,∞), and let H1 := H1(R+) be the Sobolev space consisting of all the classes of
functions f ∈ L2(R+) for which there is g ∈ L2(R+) such that

∫ ∞
0 f ϕ′ = − ∫ ∞

0 gϕ for all
ϕ ∈ C1

c (R+). Then, H1 turns into a Hilbert space when endowed with the inner product

〈f, g〉H1 = 〈f, g〉L2 + 〈f ′, g′〉L2 .

We let H1
0 be the closure of C1

c (R+) in H1. As usual, we denote by H−1 the dual space of H1
0.

Then, we have the continuous inclusions with dense images H1
0 ⊂ L2(R+) ⊂ H−1. We also

recall that for every f ∈ H1
0 there is a continuous function ϕ (in the equivalence class of f )

such that f = ϕ (a.e.). Then we define

Definition 2.1. Given a ∈ R+, the functional τa is defined as τa(ϕ) = ϕ(a), with domain
D(τa) = H1

0, in L2(R).

Proposition 2.2. The functional τa enjoys the following properties:

(1) τa is a bounded functional on H1
0.

(2) If δa denotes the delta distribution of H−1, that is δa(ϕ) = ϕ(a), then the dual functional
τ ∗
a : C → H−1 is given by τ ∗

a (z) = zδa .
(3) The operator τ ∗

a τa : H1
0 → H−1 is given by

(τ ∗
a τa)(ϕ) = ϕ(a)δa.

Proof. We note that there is a C such that |ϕ(a)| � ‖ϕ‖∞ � C‖ϕ‖H1
0

and hence the proof of
the theorem follows as a direct consequence of the definition. �

Remark 2.3.

(i) We introduce the delta operator from L2(R+) to H−1, to be

(τ ∗
a τa)(ϕ) = ϕ(a)δa

(
ϕ ∈ H1

0

)
,

and when no confusion arises, we shall denote the operator τ ∗
a τa by δa .
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(ii) Moreover, under the above considerations we also introduce the Hamiltonian Hω with a
delta operator perturbation on L2(R+) by

Hω = − d2

dx2
+ ωδa, (ω ∈ R)

with the domain D(Hω) = {
ϕ ∈ H1

0 : ϕ(0) = 0
}

and taking values in H−1.

(iii) We note that the free Hamiltonian H0 =: − d2

dx2 , with the domain H1
0, acts on the same

spaces as the delta operator.
(iv) Since τ ∗

a (z) = zδa for all z ∈ C, henceforth we shall identify τ ∗
a with the delta distribution

δa ∈ H−1.

3. Krein’s formula

In an abstract setting we letH be a Hilbert space, and suppose that H0 is a closed operator acting
on H and let Hω = H0 + ωA∗B where A,B ∈ H∗ and ω ∈ C. If R(z,Hω) := (z − Hω)−1

denotes the resolvent operator of H, then we obtain.

Theorem 3.4. Let H0 be a closed operator on a Hilbert space H and let A,B ∈ H∗,
not necessarily bounded and such that D(H0) ⊆ D(B). Then the following assertions are
verified.

(i) BR(z,H0)A
∗ : C → C whenever z ∈ ρ(H0).

(ii) If Hω := H0 + ωA∗B, for some ω ∈ C, is such that ρ(Hω) = ρ(H0), then

R(z,Hω) = R(z,H0) + ωk(z)R(z,H0)A
∗BR(z,H0)

for all z ∈ ρ(H0), where k(z) = (1 − ωBR(z,H0)A
∗)−1.

Proof. Since (i) is clear, then we proceed to show (ii). First we note that

R(z,Hω) − R(z,H0) = ωR(z,Hω)A∗BR(z,H0). (3.1)

Now by (i) we have

ωBR(z,H0)A
∗ : C → C.

Then we define k(z) := (1 − ωBR(z,H0)A
∗)−1 for z not a singularity. On the other hand we

have that R(z,Hω)A∗[1 − ωBR(z,H0)A
∗] = R(z,H0)A

∗ and hence

R(z,Hω)A∗ = k(z)R(z,H0)A
∗. (3.2)

Now inserting (3.2) into (3.1) it follows that

R(z,Hω) = R(z,H0) + ωk(z)R(z,H0)A
∗BR(z,H0)

and the proof is now finished. �

Corollary 3.5 Perturbation by a rank-1 projection. Let H0 be a self-adjoint operator on a
Hilbert space H, and let ϕ0 ∈ H such that ‖ϕ0‖ = 1. If Hw = H0 + w(〈|ϕ0〉〈ϕ0|〉) for some
w ∈ C, then

R(z,Hw)ψ = R(z,H0)ψ +

(
w〈ϕ0, R(z,H0)ψ〉

1 − w〈ϕ0, R(z,H0)ϕ0〉
)

R(z,H0)ϕ0 (3.3)

for all ψ ∈ H.

Proof. If we define Aψ = 〈ϕ0, ψ〉 then A∗z = zϕ0 (z ∈ C). Thus A∗Aψ = 〈ϕ0, ψ〉ϕ0 and
hence we write

Hw = H0 + wA∗A.
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Then the k function corresponding to the Krein formula in this case is given by

k(z) = (1 − w〈ϕ0, R(z,H0)ϕ0〉)−1.

Moreover, for ψ ∈ H,

R(z,H0)A
∗AR(z,H0)ψ = 〈ϕ0, R(z,H0)ψ〉R(z,H0)ϕ0

and Krein’s formula (3.3) follows for a rank-1 perturbation. �

Next we show how to apply Krein’s theorem to self-adjoint operators H0 with a delta
perturbation on L2([0,∞)).

Corollary 3.6 Perturbation by a delta operator. Let H0 be a closed operator on L2(R) with
D(H0) = H1

0 and let H = H0 + ωδa for ω ∈ R and a ∈ R. Then H has domain equal to H1
0

and takes values in H−1. Moreover, if ρ(H0) = ρ(H), then k(z) = (1 − ωτaR(z,H0)τ
∗
a )−1

and

R(H, z) = R(H0, z) + ωk(z)R(H0, z)τaτ
∗
a R(H0, z). (3.4)

4. An application

We now consider the delta perturbation of H0 = − d2

dx2 acting on L2(R+), that is for
w ∈ C, a ∈ R+

Hw = − d2

dx2
+ wτ ∗

a τa with D(Hw) = {
ϕ ∈ H1

0 : ϕ(0) = 0
}
.

To compute R(z,Hω) first we note that τ ∗
a τ is defined in terms of δa by remark 2.3. Thus by

corollary 3.5 we obtain that

k(z) = (1 − ωτaR(z,H0)τ
∗
a )−1. (4.1)

Now for x, y > 0 and Im
√

z > 0 we let

K(x, y; z) := −1

2i
√

z
(ei

√
z|x+y| − ei

√
z|x−y|)

be the Green function associated with the solution of the Schrödinger equation{−u′′(x) + ωu(x) = f (x) (x � 0)

u(x) ∼ 0, as x → +∞.
(4.2)

We recall that

R(z,H0)ψ(x) =
∫ ∞

0
K(x, y; z)ψ(y) dy ψ ∈ L2(R+).

Since R(z,H0) : H−1 → H1
0 then (R(z,H0)δa)(x) = K(x, a; z). Thus

τaR(z,H0)τ
∗
a = K(a, a; z) = −1

2i
√

z
(ei2a

√
z − 1)

and hence by (4.1) we obtain that

k(z) = [1 − ωK(a, a; z]−1.

Then R(z,Hω) is obtained by applying (3.4). Since

(R(z,H0)τaτ
∗
a R(H0, z))ψ(x) =

[∫ ∞

0
K(a, y; z)ψ(y) dy

]
K(x, a; z),
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Krein’s identity for Hw yields that

R(z,Hw)ψ(x) =
∫ ∞

0

[
K(x, y; z)

K(x, a; z)
+

ωK(a, y; z)

1 − ωK(a, a; z)

]
ψ(y) dyK(x, a; z).

We summarize these observations in the next theorem.

Theorem 4.7. Let Hω = − d2

dx2 + ωδa , acting onH∞. Then for all z ∈ ρ(Hω) and ψ ∈ L2(R+)

R(z,Hw)ψ(x) =
∫ ∞

0

[
K(x, y; z)

K(x, a; z)
+

ωK(a, y; z)

1 − ωK(a, a; z)

]
ψ(y) dyK(x, a; z)

where

K(x, y; z) := −1

2i
√

z
(ei

√
z|x+y| − ei

√
z|x−y|)

for x, y > 0 and Im
√

z > 0 is the Green function of equation (4.2).

5. Existence of almost exponentially decaying states

In this section we show the existence of states which decay with an approximately exponential
rate and which are initially localized on the fixed interval [0, a]. To this end, we compute
〈ψ, eitHωψ〉, for ψ which vanishes outside [0, a].

First, we introduce some preliminary notation. Let ψ ∈ L2(R+) be such that supp(ψ) ⊆
[0, a] and define

rψ(λ) := 2
√

λ

[∫ a

0

sin(
√

λx)√
λ

ψ(x) dx

]2

.

Henceforth we denote rψ simply by r and its Fourier transform by r̂(t).
We are now ready to state the main result for this section.

Theorem 5.8. Let ψ be a real-valued function with support contained in [0, a], and ψ ∈
L2(R+). For each integer n let λn = (

nπ
a

)2
, �2

ε,n = ε n3π3

a4 where ε = 1
aω

. Let zn = λn −
�ε,n − i�ε,n. Then for each 0 < ε < 1

〈ψ, eitHωψ〉 = C(�ε,n, ψ) e−i(λn−�ε,n)t−�ε,nt + (
√

π/2)̂r(t),

where

C(�ε,n, ψ) = 2r(zn)

a2(1 + i)

[
cosh(2a

√
zn)

i�ε,n

− 2π�ε,n e2ia
√

zn

]
.

Previous to the next corollary we should remark that if ψ2n(x) = sin
(

2nπ
a

x
)

for 0 � x � a,
and ψ2n(x) = 0 elsewhere, then

r2n(λ) = 8n2π2

a2

1√
λ

sin2(a
√

λ)

(λ − 4n2π2/a2)2
. (5.1)

Now under the notation of the above theorem we have the following estimate for r̂(t).



Resonances for Hamiltonians with a delta perturbation 7515

Corollary 5.9. Let ψ2n(x) = sin
(

2nπ
a

x
)

for 0 � x � a, and λ2n = (
2nπ
a

)2
. Then

(i)

lim
λ→λ2n

r(λ) = 2nπ.

(ii) For 0 < ε � 1

|C(�ε,n, ψ2n)| ≈ 2

ε

(
cosh(4nπ)√

2nπ

)
.

(iii) For 0 < ε � 1 there is a Tε > 0 such that

| r̂(t)| � |C(�ε,n, ψ2n)| (0 � t � Tε).

6. Concluding remarks

(i) We have shown the existence of almost exponentially decaying states in the context of 1D
quantum mechanics. In particular we have considered a particle of unitary mass moving
in the positive half-axis in the presence of a delta potential at x = a, with penetrability ω.
Using the exact expression due to Krein for the resolvent operator for this problem, which
is also known from the path integral formalism [5, 6], we demonstrate that for initially
trapped states, described by a function with support in [0, a], whose wave numbers κn are
close enough to the resonance value kn = nπ/a, the probability of remaining trapped at
time t decays exponentially in the zero penetrability limit when ω → ∞. The lifetime
associated with them is given by τn = (1/

√
ε)

√
akn, with �ε,n = √

ε/
√

akn.
(ii) In the case that the initial state is of finite support but is not almost stationary we

conjecture that under these conditions there is a polynomial type of decay instead of
almost exponential.

(iii) In dimension 3 one should expect a similar result for the decay of the quasi-stationary
states, which corresponds to wavefunctions with radial dependence proportional to the
spherical Bessel functions. This extension can be carried on along the lines outlined by
Holstein [8].
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Appendix

We recall that

〈ψ, eitHωψ〉 =
∫ ∞

−∞
eitλ d〈ψ,Eλψ〉

where Eλ is the spectral measure for Hω. Since Hω has an absolutely continuous spectrum in
(0,∞), we have, for any interval I ⊆ (0,∞),∫

I

eitλ d〈ψ,Eλψ〉 = 1

π
lim
δ→0+

∫
I

e−iλt Im〈ψ,R(λ + iδ,Hω)ψ〉 dλ.
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In what follows we assume that ψ ∈ L2(R+) is such that supp(ψ) ⊆ [0, a]. Then we
define

G1(ψ)(λ) :=
∫ a

0
ψ(x)

∫ a

0
K(x, y; λ)ψ(y) dy dx

and

G2(ψ)(λ) :=
∫ a

0
ψ(x)

∫ a

0

(
K(a, y; z)K(x, a; λ)

1
w

− K(a, a; λ)

)
ψ(y) dy dx.

Then by the Krein formula, theorem 4.7, it follows that

〈ψ,R(λ,Hω)ψ〉 = G1(ψ)(λ) + G2(ψ)(λ). (A.1)

Proof of theorem 5.8. We first compute 〈ψ,R(λ,Hw)ψ〉. By the properties of K(x, y; z)

when Im
√

z > 0 it follows that

1

π
lim
δ→0+

∫ ∞

0
e−iλt Im 〈ψ,R(λ + iδ,Hω)ψ〉 dλ = 1

π

∫ ∞

0
e−iλt Im〈ψ,R(λ,Hω)ψ〉 dλ.

Next we recall that

r(λ) := 2
√

λ

[∫ a

0

sin(
√

λx)√
λ

ψ(x) dx

]2

.

Then it easily follows that Im G1(ψ)(λ) = r(λ)

2 . Thus∫ ∞

0
e−itλ Im G1(ψ)(λ) dλ = 1√

2
r̂(t), (A.2)

where r̂ stands for the Fourier transform of r. Hence it remains to find
∫ ∞

0 e−itλ ImG2(ψ)

(λ) dλ. We first recall that K(a, a; λ) = −1
2i

√
λ
(ei2

√
λa − 1), and

G2(ψ)(λ) =
(

2i
√

λ ei2a
√

λ

−1 + 2iεa
√

λ + ei2a
√

λ

) [∫ a

0

sin(
√

λx)√
λ

ψ(x) dx

]2

. (A.3)

Next we denote

fε(λ) := −1 + 2iεa
√

λ + ei2a
√

λ for ε := 1

aw
.

Thus by (A.3) we have

G2(ψ)(λ) = iei2a
√

λ r(λ)

fε(λ)

where

fε(λ) = (−1 + cos(2a
√

λ) + i(εa
√

λ) + sin(2a
√

λ)).

Now if we let u = √
λ, and un = √

λn = nπ
a

, then cos(a(u − un)) = cos(au) and
sin(a(u − un)) = sin(au). Thus we obtain that

fε(u
2) = (1 + cos(2a(u − un)) + i(εau + sin(2a(u − un))). (A.4)

Now by taking the Taylor expansion of cos(u) and sin(u) respectively by (A.4) we arrive at

fε(u
2) = − (2a(u − un))

2

2
+ 0((u − un)

2) + i(εau + 2a(u − un) + 0(u − un)). (A.5)
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Since u = √
λ = √

λn

√
1 + �λ

λn
+ o(λ), where �λ = λ − λn and λ > 0, it follows that

√
λ =

√
λn

(
1 +

�λ

2λn

)
+ o(λ), (λ > 0).

Since u − un = √
λ − √

λn, then u − un = (λ − λn)
1

2
√

λn
+ o(λ), and by (A.5) we arrive at

fε(λ) = −a2

2

[
(λ − λn)

2 − i2�2
ε,n

]
+ D(λ) (A.6)

where D(λ) is an analytic function such that when zn = λn − �ε,n−i�ε,n then limz→zn
D(z) =

f (zn). On the other hand we have the decomposition

G2(ψ)(λ) = 2i e2i
√

λar(λ)

−a2
(
(λ − λn)2 − 2i�2

ε,n

) +
2i e2i

√
λaD(λ)r(λ)

a2
(
(λ − λn)2 − 2i�2

ε,n

)
fε(λ)

= a(λ) + b(λ),

where

a(λ) := 2i e2ia
√

λr(λ)

−a2
(
(λ − λn)2 − 2i�ε,n

) and b(λ) := 2i e2i
√

λaD(λ)r(λ)

a2
(
(λ − λn)2 − 2i�2

ε,n

)
fε(λ)

.

Now

Im a(λ) = 2 cos(2a
√

λ)r(λ)(λ − λn)
2 − 4�2

ε sin(2a
√

λ)r(λ)

−a2
(
(λ − λn)4 + �4

ε,n

) .

Moreover, we have that

g(z) =
[
2 cos(2a

√
λ)r(z)(z − λn)

2 − 4�2
ε sin(2a

√
z)R(z)

]
e−izt

−a2(z − (λn − �ε,n − i�ε,n))(z − (λn + �ε,n + i�ε,n))

has a simple pole at zn = λn − �ε,n − i�ε,n. Hence∫ ∞

0
e−iλt Im (a(λ)) dλ = − 4π�ε,n

a2(1 + i)
e2ia

√
znr(zn) e−iznt . (A.7)

Next we compute
∫ ∞

0 e−iλt Im b(λ) dλ. First we note that for small values of ε, fε(z) =
−1 + iεa

√
z + e2ia

√
z does not vanish for z close enough to zn = λn − �ε − i�ε,n. Thus 1

f (z)

has no singularities in a neighbourhood of zn. Then by applying the same reasoning as in the
computation of integral (A.7) we obtain∫ ∞

0
e−iλtb(λ) dλ = 2π

a2

e2ia
√

znr(zn) e−iznt

(1 + i)�ε,n

. (A.8)

Now limz→zn
D(z) = f (zn) by (A.6). Next we recall that Im b(λ) = 1

2i (b(λ) − b(λ)).
Moreover,

b(λ)) = −2i e−2ia
√

λD(λ)r(λ)

a2
[
(λ − λn)2 + 2i�2

ε

]
f ε(λ)

Hence ∫ ∞

0
e−iλtb(λ) dλ =

(
−2π e−2ia

√
znr(zn)

a2(1 + i)�ε

)
e−iznt . (A.9)

Thus by (A.8) and (A.9) we arrive at∫ ∞

0
e−iλt Im b(λ) dλ = 2πr(zn)

a2i(1 + i)�ε,n

cosh(2a
√

zn) e−iznt . (A.10)
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Thus from (A.7) and (A.10) we obtain

1

π

∫ ∞

0
e−iλt Im G2(ψ)(λ) dλ = C(�ε,n, ψ) e−i(λn−�ε,n)t−�ε,nt (A.11)

where

C(�ε,n, ψ) = 2r(zn)

a2(1 + i)

[
cosh(2

√
zna)

i�ε,n

− 2π�ε,n e2ia
√

zn

]
.

Hence by (A.2) and (A.11) we arrive at

1

π

∫ ∞

0
e−iλt Im〈ψ,R(λ,Hω)ψ〉 dλ = C(�ε,n, ψ) e−i(λn−�ε,n)t−�ε,nt +

1

π
√

2
r̂(t),

and the proof is finished. �

Proof of corollary 4.9. The proofs (i) and (ii) are clear. Now statement (iii) follows from
the fact that

r̂(0) = 16n2π2

a2
√

2π

∫ ∞

0

sin2(au)

(u2 − 4n2π2/a2)2
du.

Thus given 0 < ε � 1, there is an interval [0, Tε] such that (ii) together with the continuity of
r̂(t) implies the truth of assertion (iii). �
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